The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials.

نویسندگان

  • R Huiskes
  • H Weinans
  • B van Rietbergen
چکیده

Bone resorption around hip stems is a disturbing phenomenon, although its clinical significance and its eventual effects on replacement longevity are as yet uncertain. The relationship between implant flexibility and the extent of bone loss, frequently established in clinical patient series and animal experiments, does suggest that the changes in bone morphology are an effect of stress shielding and a subsequent adaptive remodeling process. This relationship was investigated using strain-adaptive bone-remodeling theory in combination with finite element models to simulate the bone remodeling process. The effects of stem material flexibility, bone flexibility, and bone reactivity on the process and its eventual outcome were studied. Stem flexibility was also related to proximal implant/bone interface stresses. The results sustain the hypothesis that the resorptive processes are an effect of bone adaptation to stress shielding. The effects of stem flexibility are confirmed by the simulation analysis. It was also established that individual differences in bone reactivity and mechanical bone quality (density and stiffness) may account for the individual variations found in patients and animal experiments. Flexible stems reduce stress shielding and bone resorption. However, they increase proximal interface stresses. Hence, the cure against bone resorption they represent may develop into increased loosening rates because of interface debonding and micromotion. The methods presented in this paper can be used to establish optimal stem-design characteristics or check the adequacy of designs in preclinical testing procedures.

منابع مشابه

Effects of material properties of femoral hip components on bone remodeling.

Bone loss around femoral hip stems is one of the problems threatening the long-term fixation of uncemented stems. Many believe that this phenomenon is caused by reduced stresses in the bone (stress shielding). In the present study the mechanical consequences of different femoral stem materials were investigated using adaptive bone remodeling theory in combination with the finite element method....

متن کامل

Bone density study of the proximal femur after hip arthroplasty with porous-coated implants

Progressive loss of bone mineral density around the femora! component of total hip replacement continues to pose a threat to long term prosthetic survival. A linear study was undertaken to measure bone mineral density on a monthly basis following total hip arthroplasty in 11 male patients. The opposite femur was used as the control measurement. Bone mineral density was unchanged at two mo...

متن کامل

Analysis of stress distribution around total hip stems custom-designed for the standardized Asian femur configuration

In total hip replacement (THR), bone resorption related to the foreign body reaction around the implant causes bonding failure at the bone-prosthesis interface and adversely affects the function and longevity of femoral implants. Stress shielding is thought to be one of the possible biomechanical factors that causes bone resorption, and is related to prosthesis design. We therefore investigated...

متن کامل

Adaptive bone remodeling and biomechanical design considerations for noncemented total hip arthroplasty.

Clinical problems with noncemented total hip arthroplasty (THA) stems, directly or indirectly related to load transfer, include mid-thigh pain due to relative (micro) motions or excessive endosteal interface stresses, subsidence and loosening due to inadequate primary stability and fit, and proximal femoral bone atrophy due to stress shielding. In this article, the load-transfer mechanisms asso...

متن کامل

Preclinical Testing of Total Hip Stems

The long-term fixation endurance of noncemented hip stems in total hip arthroplasty is subject to incompatible design goals. To reduce stress shielding and periprosthetic bone loss, proximal fixation and load transfer are indicated. However, to prevent interface motion and promote interface-bonding security, fixation preferably should be maximized over the entire stem surface. In this study, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Clinical orthopaedics and related research

دوره 274  شماره 

صفحات  -

تاریخ انتشار 1992